
VIRUS BULLETIN www.virusbtn.com

4 MAY 2007

ANI-HILATE THIS WEEK
Peter Ferrie
Symantec Security Response, USA

The time between the announcement of a vulnerability and
the exploitation of that vulnerability continues to shrink.
This is especially true when the vulnerability in question is
a stack overflow, since it requires very little skill to exploit.
The recent ANI vulnerability is a prime example. Before
we get into that, let’s find out a little more about ANI files
in general.

An ANI file contains animated cursors and icons – for
example, the hourglass which turns upside-down during
heavy processing. Internally, ANI files are Microsoft’s
Resource Interchange File Format (‘RIFF’) files. They are,
in fact, little-endian versions of Electronic Arts’ Interchange
File Format (‘IFF’) files that were introduced to the Amiga
in 1985. IFF files themselves were inspired by Apple’s
OSType files that were released with the Macintosh
computer in 1984.

IT’S ‘TERIFFIC’
RIFF files contain a collection of chunks, each of which
begins with a four-byte type-name, followed by the size of
the chunk.

The first chunk in a RIFF file is named ‘RIFF’. This is one
of the two types of chunk that contain a subtype and a
collection of subchunks (the other one is ‘LIST’).

The subchunks have the same format as chunks. The idea is
that the rest of the file is a collection of subchunks within
the ‘RIFF’ chunk. The size field is not verified (most likely
because it is assumed that nothing follows the ‘RIFF’
chunk). Instead, Microsoft’s parser ensures that accesses
remain within the bounds of the file by calling the
GetFileSize() API and comparing file offsets against the
returned value.

The ‘RIFF’ chunk subtype has the name ‘ACON’ (which
may be an abbreviation of ‘Animated iCON’). Very few
subchunk types are supported, and some of them depend on
the presence of others earlier in the file. For example, until
an ‘anih’ type is seen, only a ‘LIST’ type with the ‘fram’
subtype and ‘icon’ subchunk(s) is accepted. All other types
are skipped. Once an ‘anih’ type is seen, the ‘seq’, ‘rate’,
and additional ‘anih’, types are also accepted.

PATCHWORK QUILT
The vulnerability that is being exploited is an unbounded
copy operation to a fixed-size stack buffer. Exactly the same

vulnerability in exactly the same function was found in
2004. The ‘anih’ subchunk contains a field that specifies the
size of the data. While the data are a fixed size – 36 bytes –
the value in that field is used in a copy operation. This
allowed an attacker to specify an arbitrary size for the block
and overflow the stack buffer. At the time, Microsoft
patched the vulnerability by adding a requirement that the
first ‘anih’ block is exactly 36 bytes long. It’s unclear why
they did it that way, because the block is copied again later,
using the fixed value of 36.

For subsequent ‘anih’ subchunks, the data are copied to the
stack buffer, then 36 bytes are copied to another buffer, and
then there is a check that the data are exactly 36 bytes long.
It is possible that the reviewer thought that this check would
prevent exploitation, but by the time the check is made, the
buffer has already been overflowed.

This time the patch added the same kind of check for these
subsequent ‘anih’ subchunks before they are copied. Since
the memory of subsequent ‘anih’ subchunks is allocated
dynamically, an additional piece of code was added to free
any existing block prior to allocating a new one. So we go
from this:

if (fccType == “anih”)

copy <size> bytes to stack

block = allocate 36 bytes

copy 36 bytes to block

to this:

if ((fccType == “anih”) && (size == 36))

copy <size> bytes to stack

if (block != 0) free(block)

block = allocate 36 bytes

copy 36 bytes to block

instead of the more sensible:

if (fccType == “anih”)

if (block == 0) block = allocate 36 bytes

copy 36 bytes to block

for only a single bounded copy operation, with no need to
free anything.

BREAKING WINDOWS

Despite Microsoft’s claims of improved security, Vista is just
as vulnerable as every other version of Windows. There were
supposed to be three mitigating factors, but two of them
proved unsuccessful in this case.

The first is the Buffer Security Check (/GS), which also
exists in Windows XP SP2. This is a stack protection
mechanism that is designed to prevent altered return
addresses from being used, by checking a value that exists

EXPLOIT ANALYSIS

VIRUS BULLETIN www.virusbtn.com

5MAY 2007

on the stack below the return address. The idea is that if the
return address has been altered, then the magic value must
also have been altered. However, because of the
performance impact of the /GS protection, it is optional –
and even then it is applied only to functions that have
certain characteristics. More specifically, /GS protection is
applied only to functions that contain arrays of five or more
characters (ASCII or Unicode), and is not applied to
functions that contain only structures with small individual
fields. Since the vulnerable routine contains only structures
with small individual fields, the Buffer Security Check was
not applied.

Vista’s second mitigating factor is Address Space Layout
Randomization (ASLR), which allows an ASLR-aware
process to have its contents placed at a random address in
memory. The idea is to make the return address unlikely
to be reached in a single attempt, and thus prevent the
exploit from succeeding most of the time. However, there
are two methods by which an ANI exploit can defeat ASLR
on Vista.

The first method is not specific to ANI exploits, but applies
to any stack-based exploit for which /GS does not apply. It
relies on the fact that, for architectural reasons, ASLR
leaves the lower 16 bits of the address unchanged. It
randomizes only eight bits of the 32-bit address on the
32-bit versions of Vista, but even if all 15 of the available
upper bits were randomized (there would be a significant
performance impact to that), the vulnerability would
remain. All that is required is to find an appropriate
instruction within the 64kb block that holds the existing
return address. Then only the lower 16 bits need to be
modified for exploitation to succeed, no matter where the
process exists in memory.

EXCEPTIONAL BEHAVIOUR

The second method is specific to ANI exploits, and comes
into play if no appropriate instruction can be found. It relies
on the fact that a Structured Exception Handler (SEH) is
installed by the caller of the vulnerable function.

If an exception occurs, the SEH gains control, but this
particular SEH ignores the error and returns success. The
process does not crash, and the user will not notice that
anything went wrong. The result is that an attacker can
send multiple malicious files to the vulnerable function,
each with a different return address. Since there are only
256 possible combinations, it becomes a trivial matter to
brute-force the correct address and compromise a
vulnerable machine.

The only mitigating factor that stands any chance of success
is Data Execution Protection/No eXecute (DEP/NX), which

is a method for marking a region of data, such as the stack,
as non-executable. The problem is that it works only if it is
enabled for the process, and by default, DEP/NX it is not
enabled for 32-bit Internet Explorer (which is the most
likely attack vector), even if hardware-backed DEP/NX is
present. A simple attack will attempt to execute directly
from the exploited buffer, which DEP/NX will prevent.
However, it is possible (though not easy) to craft the stack
to execute the VirtualProtect() API on the exploited buffer
first, and then to execute the exploited buffer itself.
DEP/NX cannot prevent such an action.

Internet Explorer can be exploited easily because it supports
animated cursors. According to a Determina advisory,
Firefox is vulnerable too, despite the fact that it does not
support animated cursors. However, given the fact that
icons can be animated, and that there are multiple paths to
the same code (LoadCursor(), LoadIcon(), and
LoadImage(), and perhaps things like CopyImage(),
GetCursorFrameInfo(), and SetSystemCursor()), it seems
highly likely that Firefox can be coerced into calling an
appropriate API. Windows Explorer is exploited
automatically without user interaction when browsing a
directory that contains a malicious file, because Explorer
parses the file in order to display the icon.

OOPS I DID IT AGAIN

Continuing the long tradition of attackers who don’t seem to
understand what they’re doing, we saw a collection of odd
attempts at exploiting this vulnerability. The funniest one
contained the ‘LIST’ chunk name spelled backwards. This
may have been the result of bad disassembling, but the other
chunk names were correct, which made the misspelling very
perplexing.

There were also chunks with odd-sized blocks, but this is
legal and perhaps was used as a detection bypass. In any
case, the only requirements for exploitation are two ‘anih’
blocks, of which the first must be in the correct format (36
bytes long, frame and step count less than 65,536, flags bit 0
set to specify a Windows cursor or icon, etc.) and the second
must contain the exploit.

CONCLUSION

So what have we learned from all this? The first ANI
vulnerability was the result of bad code. The second ANI
vulnerability was the result of more bad code. The way to
patch bad code is to remove the bad code, not to add new
bad code that hides the old bad code.

A more pertinent question would be: what has Microsoft
learned from all this?

