
VIRUS BULLETIN www.virusbtn.com

4 JULY 2006

TUMOURS AND POLIPS
Peter Ferrie
Symantec Security Response, USA

It seems that we have reached the stage where a parasitic
virus has become a novelty. That might explain why the
W32/Polip virus caught us by surprise recently – we didn’t
expect to see one, and we certainly didn’t expect to see
anything of such apparent complexity. However, looks can
be deceiving.

The virus author chose the name ‘Polipos’, which is the
Spanish word for polyp, a non-malignant growth. Perhaps
the virus author wanted to suggest that the virus was
harmless.

While the virus certainly was written carefully, its author
was not careful enough. The virus author favoured function
over form, so the code is far from optimised, but it works
well enough.

EXIT, STAGE LEFT

The virus begins by checksumming itself, and branches to
an exit routine if the checksum does not match the expected
value. This is where we encounter the first bug. The exit
routine is intended to restore the patched host bytes. It
requires the VirtualProtect() API to have been retrieved
from kernel32.dll – however at this point no APIs have been
retrieved. The virus is aware of this possibility and checks
whether the address is zero.

The bug is the fact that the address is never initialised, so it
always contains a non-zero value. Additionally, the virus
assumes that the host module handle has been retrieved, but
again, this has not occurred yet. However, neither of these
problems causes a crash, since the virus uses Structured
Exception Handling to trap the errors, and simply skips
restoring the bytes.

The virus then copies the host bytes into a special buffer and
executes them from there. This means that if the host bytes
are never restored, the virus code could be called repeatedly,
as often as the patched bytes are reached.

HAPI HAPI, JOY JOY

If the checksum matches, the virus will retrieve some API
addresses from kernel32.dll. The APIs are located by
checksum, instead of by name.

While there is nothing new about this idea, the API resolver
in this virus is aware of import forwarding. This is new code
for a virus, even though the problem has long been known

about and documented by virus writers. It is also a
requirement for the virus to work with Windows XP and
later, since some functions, such as GetLastError(), are
forwarded into ntdll.dll as RtlGetLastWin32Error().

Function forwarding exists in all 32-bit Windows versions,
including Windows 9x/Me, but the forwarded functions on
those platforms are not used by the virus.

Interestingly, the checksum routine is the same 16-bit
CRC32 routine that has been used by a number of viruses
previously. Given the technical level of the rest of the code,
this routine seems a very strange choice.

The first set of APIs that the virus retrieves are related to file
management. The virus branches to the exit routine if any
API is not retrievable. The second of the bugs in the virus
occurs here, and it is the fact that the check for retrieving all
of the APIs successfully appears only after one of the
functions has already been used.

The virus then retrieves a second set of APIs, most of which
are related to thread management. It branches to the exit
routine if more than nine APIs are not retrievable. If that
check passes, the virus makes certain assumptions about
which of those APIs have been retrieved successfully.

BAD SEED
At this point, the virus calls the GetTickCount() API to
initialise the random number generator. The generator is
seeded further by the entry point address of the virus.

There is some unused code here, which perhaps is left over
from an earlier version, since a text string suggests that this
is ‘version 1.2’. The code loads kernel32.dll again, even
though it has been used already.

The virus then retrieves a set of APIs from user32.dll, which
are related to window messaging. It branches to the exit
routine if any API is not retrievable.

At this point, the virus considers itself sufficiently initialised
to choose a different exit routine in the event of failure. That
function supports the repair of files that have data appended
to their executable image, typically application installers
and self-extracting archives.

STRATA MANAGER
The repair function begins by copying the infected file to
the ‘%temp%’ directory, as ‘ptf[random].tmp’. The file is
checksummed and compared with the checksum that the
virus carries. If the checksums do not match, the virus
terminates and does not even run the host.

Otherwise, the virus restores the host bytes, as before.
Additionally, the virus carries a table that contains the

VIRUS ANALYSIS

VIRUS BULLETIN www.virusbtn.com

5JULY 2006

addresses of the cavities that the host contained, in which
the virus placed some of the decryptor code. The virus
erases the content of those cavities, and restores the section
sizes to their original values.

The virus removes the unnamed section that contains the
virus body, and moves back all of the data directories that
were present. It also restores the security table if it existed
previously. The virus relocates all debug and/or resource
information properly, if they existed. It also rewrites the
file header information to remove all traces of the added
section.

The virus recalculates the SizeOfCode,
SizeOfInitializedData and SizeOfUnitializedData values to
place into the PE header. However, these values are used
only if the SizeOfCode value was zero in the original file –
which can never happen, since the virus avoids such files.
Otherwise, the virus uses the values that it reserved prior to
the infection.

If the PE checksum field was non-zero previously, the virus
checksums the file again and compares it with the checksum
of the original file that the virus carries. If they match, the
virus uses that checksum, otherwise the virus uses the
CheckSumMappedFile() API, if it is available, to calculate a
new checksum.

The repair function is capable of returning three different
result codes, one of which indicates complete success. The
result is checked at the end of the function, but no action is
taken. That check appears to be from older code. The result
is also checked again later, and if repair was a complete
success, the repaired file is executed. Once the repaired file
terminates, the virus waits three seconds, then deletes the
file and terminates the infected process.

NEW VERSION

The virus collects information about the operating system of
the victim machine, the amount of memory present, as well
as the CPU family and its capabilities. Specifically, the virus
retrieves the Windows version number, and branches to the
repair routine if it finds it is running on Windows NT. The
virus accepts all Windows 9x versions (it has code devoted
to the special handling required there), including Windows
Me, and Windows 2000 and later.

The virus calls the GlobalMemoryStatus() API to find out
how much physical memory exists, and exits if there are
less than 64Mb. The documentation for the API states that
the size field must be set first, but this is not true, and the
virus author knows it.

The virus checks the CPU flags for the presence of the
CPUID instruction, and if available it uses the CPUID

instruction to query the CPU family and for the presence of
two recent instructions. The virus requires an Intel 80486 or
better CPU, but also requires support for the CMPXCHG8B
instruction (introduced in the Intel Pentium 1) and CMOV
instruction (introduced in the Intel Pentium 2). The virus
branches to the repair routine if one or more of these three
instructions is not available.

The virus write-enables its own module header in order to
place an infection marker there if one is not present already.
Since this operation is supported only on Windows NT and
later, the virus achieves this by using the undocumented
VxDCall function if it is run on Windows 9x/Me. If the
infection marker was already present, the virus branches to
the repair routine.

The virus also checks if the system is shutting down, by
querying the GetSystemMetrics() API, and branches to the
repair routine if so. This check is supported only by
Windows XP and later. Conveniently, however, the return
value is the same if the request is unsupported, and if the
system is not shutting down. As such, it is unclear whether
the virus author intended to support Windows 2000, or was
targeting Windows XP and later.

If all of these checks pass, the virus retrieves from
advapi32.dll a set of APIs that are related to security tokens
and registry key manipulation. It branches to the repair
routine if any API is not retrievable.

The virus queries the ‘SCRNSAVE.EXE’ value of
‘HKCU\Control Panel\Desktop’ key. A bug exists here that
results in a handle leak if the value does not exist. The
returned filename is a candidate for infection.

TERMINAL DISEASE

The virus attempts to acquire the ‘SeDebugPrivilege’ and
‘SeCreateGlobalPrivilege’ privileges. The ‘SeDebugPrivilege’
is required for process enumeration, while the
‘SeCreateGlobalPrivilege’ is required by Terminal Services
applications in order to create a file-mapping object, which
the virus uses for several purposes. This is the first known
virus that is aware of Terminal Services.

The virus creates a file-mapping object in the global
namespace, whose name is the entry point code of the host.
The name is adjusted to remove all zeroes. Additionally, the
attributes are adjusted so that they also work on Windows
XP SP2. Within this map, the virus creates three randomly
named global namespace objects, and marks the map with
the string ‘JIPC’ (‘gypsy’).

On Windows 9x/Me, the virus allocates memory using an
undocumented flag to create a shared memory region. On
Windows 2000 and later, the memory region is already

VIRUS BULLETIN www.virusbtn.com

6 JULY 2006

shared. The virus then copies itself into the shared memory
region. This copy of the virus code is used when the virus
injects itself into other processes.

The virus also acquires a security descriptor to achieve full
access to objects that require ACLs. This is very uncommon
– other viruses simply allow Windows to supply the default
security descriptor, with the potential associated access
limitations.

The virus then checksums the current process filename if it
has been run either from a subdirectory from the following
list or from within the ‘%ProgramFiles%’ or
‘%SystemRoot%’ directories (which might be different
from the list below), regardless of the drive:

\program files

\windows

\win98

\win98se

\winxp

\win2000

\winnt

\winme

Based on that, the virus intends to check the checksum
against a list of 37 special filenames. The filenames belong
to network-aware applications such as Windows Messenger,
MSN and NetMeeting. However, a bug exists here – this
code is reached regardless of the execution location, so the
register that should hold the checksum could hold another
value, and it is possible that this value can match something
in the list.

If the checksum was not found in the list, the virus
enumerates the windows of the current process to see if one
of them corresponds to Windows Explorer.

If the checksum was found, or if the current process is
Windows Explorer, the virus retrieves from wininet.dll a set
of APIs related to remote file retrieval. If any APIs cannot
be retrieved, the virus ‘forgets’ that it found any of the APIs.

ON A TIGHT SCHEDULE

The virus uses its own thread scheduler, which works across
process boundaries. The reason for this is that multiple
threads will be injected into remote processes, and they
must be coordinated to prevent resource conflict and to
synchronise their behaviour. This appears to be the work of
a professional programmer.

The scheduler begins by checking whether the filename of
the current process can be found in a list carried by the

virus. The list is composed of names of a large number of
anti-malware products, and several other applications that
are known to perform self-checking. The virus disables the
file infection if any of them are found.

The virus retrieves the address of the undocumented
SfcTerminateWatcherThread() API from sfc.dll. The virus
uses the GetProcAddress() API because its import resolver
does not support functions that are imported by ordinal
only. If the current process filename is ‘winlogon.exe’, the
virus calls the SfcTerminateWatcherThread() API to disable
the System File Checker.

HOOKED ON CLASSICS

The virus then retrieves the following API addresses from
kernel32.dll – it retrieves only the first five if it is running
on Windows 9x/Me, or all of them if it is running on
Windows 2000 or later:

ExitProcess

CreateProcessA

CreateFileA

LoadLibraryExA

SearchPathA

CreateProcessW

CreateFileW

LoadLibraryExW

SearchPathW

The code in these functions is parsed, instruction by
instruction, using what appears to be a home-made length
disassembler engine.

At 778 bytes long, this is surely one of the largest and most
inefficient assembler length disassembler engines in
existence. The champion of those was published in 29A#7,
and is more functional, yet only 339 bytes long (and it can
even be shortened by one byte!). However, as noted
previously, the author of this virus favoured function over
form, so the code is far from optimised.

The disassembler is used to copy code from the API, until
five bytes have been copied, or an e8 or e9 opcode is seen.
In either case, if the API address could be retrieved, then it
will be hooked to point to code within the virus body.

Since the data to be modified exist in a shared memory
region, the virus uses a multiprocessor-compatible method
to write the required number of bytes in one pass. The
hooked APIs allow the virus to infect files as they are
accessed, or, in the case of ExitProcess, once the process
has terminated.

VIRUS BULLETIN www.virusbtn.com

7JULY 2006

After hooking the APIs, the virus queues three files for
later infection. Those files are the values of the
‘SCRNSAVE.EXE’ registry key, ‘%system%\logonui.exe’
and ‘%system%\logon.scr’.

Then the scheduler enters its idle loop. Periodically, the idle
loop creates a thread that checks for the presence of a
debugger. If one is found, the virus stops all activity until
the debugger exits.

Additionally, the virus checksums itself to ensure that two
specific routines (the scheduler and detection of VMWare)
have not been changed. A change to either of these routines
will also cause the virus to stop all activity.

TIME PASSES...

The idle loop periodically calls the routine to perform the
thread injection into other processes. The injection routine
enumerates all running processes within the current session
if running in Terminal Services.

The routine ignores processes whose names are any one of
the following:

savedump

dumprep

dwwin

drwtsn32

drwatson

kernel32.dll

smss

csrss

spoolsv

ctfmon

temp

It also ignores the current process. While searching, the
routine attempts to detect the presence of SoftICE and
VMWare. The enumeration exits if SoftICE is found, but due
to a bug, the detection of VMWare does not work.

For any other process found, the routine enumerates the
threads within the process, looking for threads that have
been created by that process (i.e. ignoring injected threads).
For each of these threads, the routine suspends the thread,
then sends it a message to see if the thread wakes up. If the
thread does not respond, the routine injects the virus code
into the remote process and redirects execution to the
injected code.

The injected code then begins the whole process again
(including unpacking, which is the reason for the large size

of virus – the virus carries a packed version of itself).
Finally, control returns to the original code in the thread.

If no thread could be suspended, the routine attempts to
create a new thread within the remote process. If that is
successful, the routine injects the virus code as described
above.

SAY YES TO GNUTELLA
After some time, the scheduler will start the backdoor
thread. First, the backdoor checks for an active network
connection. If an active connection is found, the backdoor
will create a hidden window, which is used to control the
network activity.

The virus then retrieves a set of APIs from ws2_32.dll, if
available, and otherwise from wsock32.dll. The APIs are
related to network management. The backdoor exits if any
of these APIs are not retrievable.

The backdoor understands the Gnutella 0.6 protocol, as
used by Gnucleus and BearShare, among others. It watches
for the arrival of Gnutella-specific strings, and responds
appropriately.

This is not as impressive as it sounds – the protocol is open,
and the source code is available freely. However, it is
significant in one way: the virus can spread through the P2P
network, from a compromised machine that does not have
the P2P software installed.

The Gnutella routine works by contacting a Gnutella web
caching server selected at random from a list carried by the
virus, and retrieving the current list of connected clients.
The routine then connects to these clients, so now it will be
contacted if a query is made. The routine responds to
queries by offering a file called ‘dmckaziejdntb’. This is
the virus.

The routine keeps the current contact information in the
‘{1DF41E2A-DA21-0412-829E-240A8C38F7A1}’ value of
the ‘HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\App Paths’ registry key.

Periodically, infected machines will communicate with
each other, by sending a special packet. These packets all
start with the string ‘VPacket’. For any query that contains
the string ‘cmdp’, a particular ‘VPacket’ will be sent,
which will cause the virus to connect back to the sender
on the specified port, and download an updated version of
the virus.

INFECTIOUS GROOVES
In addition to the specific files queued for infection, the
virus is interested in the subkeys in the

VIRUS BULLETIN www.virusbtn.com

8 JULY 2006

‘HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\App
Paths’ registry key. The default value of each subkey is
queried. If the filename in the data has an extension of
either ‘.exe’ or ‘.scr’, then the file will be considered a
candidate for infection.

The infection routine begins by checking if flags in the PE
header specify a file of executable type, that is neither a
DLL nor a system file. Additionally, the file must be for the
command-line or GUI subsystem. The file will not be
infected if it appears on the same anti-malware products list
that is used to avoid thread injection.

The infection marker is the presence of an unnamed section.
The virus adds this section during infection, in which to
place the virus body. Files are also avoided if they contain
only one section, or more than 11 sections. The virus also
deletes the integrity-checking databases of several anti-virus
products, if any of those files exist in the same directory as
the file to infect.

The virus breaks its code into a random number of blocks,
which it places into various areas of the file, including
unused space at the end of other sections, and the unnamed
section that the virus added. These blocks are then
encrypted using a strong algorithm. While the algorithm
resembles XTEA, it can probably no longer be called
XTEA, since all of the important characteristics of XTEA
have been changed. Specifically, XTEA is a 64-bit block
Feistel network with a 128-bit key and 64 rounds.

The sum and delta values are C6EF3720 and 9E3779B9,
respectively. Polip, on the other hand, uses a 32-bit block
Feistel network with a 32-bit key and only 10 rounds.
Additionally, the sum and delta values have been changed to
1717E09D and 9E37F9B9, respectively. Despite this weaker
encryption strength, cracking the encryption is still
infeasible within a reasonable time.

The decryptor is embedded within a highly polymorphic
layer, which is also spread over the file. While most of it is
appended to the body in the unnamed section, some parts of
the decryptor are placed at the end of executable sections in
the file.

The polymorphic engine itself presents nothing really new –
it supports random register assignment, dummy loops and
subroutines, and dummy references to the BSS section, all
of which are fairly standard these days.

However, one interesting feature relates to the dummy
subroutines themselves – the engine can produce
subroutines that support fastcall, stdcall, and cdecl-format
parameter passing, and the routines can even operate on the
parameters. The results are always discarded, though.

The key weakness in the decryptor is the linear nature of its
caller – the block decryption parameters are all passed from

the same subroutine, so once that subroutine is found, the
parameters can be retrieved and the virus code decrypted,
without any significant time penalty.

The decryptor decrypts a stub, which decrypts the rest of the
code and host bytes using a 32-bit xor key. Underneath that
is the packed virus body. The packing algorithm is
JCALG1. Underneath the packing is another layer of 8-bit
xor encryption. JCALG1 is an unusual choice. It seems that
it has been used by only one other virus – W32/Fizzer –
which also appeared to be the work of a professional
programmer.

CONCLUSION
This virus fuelled some unpleasantness in the anti-virus
community: intentional withholding of samples until
detection was completed.

The first company to detect the virus claimed that it had
updated its product to provide full detection of the virus at
that time. However, it was almost three weeks before any
other company obtained samples of the virus, and a further
week before everyone had received samples. For what
purpose? During that time, it was demonstrated that none of
the companies had managed to provide full detection of the
virus, not even the first company (which updated its
detection silently when the misses were found).

In fact, this virus is trivial to detect. To untrained eyes (i.e.
those of the virus author), the polymorphic layer does look
very complex and difficult. However, that layer contains so
many constant operations, that the real instructions are
recognisable instantly once the algorithm is understood. A
simple repair is also quite easy.

For the really hard-core coders out there, it requires fewer
than 1,000 lines of assembler to find and decrypt the virus,
and restore the host bytes, using only static analysis. No
emulation or debugging tricks are required.

Perhaps now the problem has been solved once and for all,
and we can all get back to other work.

W32/Polip

Aliases: W32/Polipos-A, PE_POLIP.A,
p2p-worm.win32.polip.a.

Type: Polymorphic memory-resident file
infector.

Payload: Infects .exe and .scr files; deletes
integrity-checking databases of
several anti-virus products.

