
VIRUS BULLETIN www.virusbtn.com

4 JANUARY 2006

FEATURE 1
INSIDE THE MICROSOFT SCRIPT
ENCODER
Peter Ferrie
Symantec Security Response, USA

When the Microsoft Script Encoder was released in 1999, it
was predicted that malware authors would use it to
obfuscate their code. As a result, tools claiming to be able to
decode the files produced by the script encoder started to
appear almost instantly.

YOU BREAK IT, YOU BUY IT
Recently, I was given an encoded script to examine, and I
was told that it might contain an exploit of some kind. Since
I am not in the habit of carrying script decoding tools with
me, I downloaded a script decoder tool and used it to
decode the file.

The result was a partially decoded file containing a
fragment of what looked like shellcode and a lot of garbage
bytes. Since the file was in ANSI format, there were three
possibilities: that the file contained double-byte character
set (DBCS) characters which were not being decoded
correctly on the English system; that the script was broken;
or that the tool contained a bug.

Assuming the first case, I tried decoding the file using other
language formats that the tool supported, but again I was
unsuccessful.

There are four languages that use DBCS characters:
traditional Chinese, simplified Chinese, Japanese and
Korean. Since the tool that I had downloaded supported
only three of these languages, I decided to download several
other script decoder tools in the hope that one of them
would support the remaining language.

When the half-dozen or so tools that I had downloaded
also failed to decode the script, I ruled out the third
possibility. How likely is it that every copy of a tool would
have the same bug? (As a matter of fact this is more likely
than one might imagine, as I found out afterwards via a
completely unrelated matter: try searching for tools that
enable ‘Unreal’ mode on x86 and x86-64 processors, notice
how many people claim to have found it, and notice that
none of them enable the A20 line first.)

That left the second possibility – that the script was broken.

SEE SCRIPT RUN, RUN SCRIPT RUN
Although I knew that running the script wouldn’t provide a
conclusive result, I ran it anyway. Sure enough, the

Windows Scripting Host reported that the script was invalid.
The question was: why?

Since I had long forgotten the details of encoded scripts, I
downloaded the Microsoft Script Encoder tool (screnc.exe)
and started to reverse-engineer it. Under normal
circumstances, one would assume that examination of an
encoder would be sufficient to provide an understanding of
decoding methods. However, in this instance that is not the
case, and it seems that the creators of the decoding tools all
made the same mistake.

SCRENC.EXE

The first interesting thing I noticed about the Microsoft
Script Encoder is that it supports ANSI, UTF-8,
Little-Endian and Big-Endian Unicode input file formats.
This is interesting because neither Microsoft’s own
VBScript and JScript scripting engines (before encoding),
nor the decoder built into those scripting engines (after
encoding), support anything but ANSI and Little-Endian
Unicode. Upon attempting to execute files in the other
formats, the Windows Scripting Host reports that they are
invalid.

The second interesting thing is that the encoding is done by
the VBScript and JScript scripting engines themselves. The
reason for this is that these engines support dynamic
encryption, using the EncodeScriptFile method. It seems
that this method was not noticed by malware authors.

The rest was fairly straightforward: encoded files begin
with the signature ‘#@~^’, followed by the base64-encoded
length of the script that follows immediately. After the
script is the base64-encoded checksum, and the signature
‘^#~@’.

The checksum is simply the sum of all of the characters
from the script before it was encoded. It is used during the
decoding phase to verify that the script has been decoded
correctly, rather than to verify that the encoded script has
not been altered.

If the script is not already in the Unicode format, it is
converted to the Unicode format in memory prior to
encoding. If the original file was in the ANSI format, the
current code page is used to perform the translation, which
causes the DBCS problem described above.

Once in the Unicode format, characters are not encoded if
more than seven bits are required to identify them. In those
cases, the character is simply copied instead. However, if
the resulting encoded script is then saved in the ANSI
format, any characters that cannot be represented in seven
bits or fewer will be replaced by the system default for
untranslatable characters (which is usually the ‘?’

VIRUS BULLETIN www.virusbtn.com

5JANUARY 2006

character). If such a replacement is made, the script can no
longer be decoded properly.

COMPOUND INTEREST
Now the fun begins – watching how Microsoft’s VBScript
and JScript scripting engines deal with encoded files.
Immediately we see that what screnc.exe produces is not all
that those engines will accept.

The first thing the script decoder does is to search the entire
script for the signature ‘#@~^’. This means that the script is
not required to appear at the start of the file. Screnc.exe can
produce such files only when the script is inside an HTML
file. However, all of the decoding tools that I tried supported
this behaviour.

The encoded script is decoded into the same location in the
script at which it is found (but not the same location in
memory). This means that unencoded script can appear
before and/or after encoded script, even though screnc.exe
cannot produce such files. None of the tools that I tried were
affected by this, since they all found the script no matter
where it was. However, one of the tools did not append the
unencoded script that appeared after the encoded script.

The entire script is searched for all signatures that exist.
This means that multiple encrypted scripts can appear in a
single file! Screnc.exe cannot produce such files, and none
of the tools that I tried supported it, either. But wait – it gets
worse ...

WHAT THE #@~^?!

Any part of a script can be encoded, even down to the level
of individual characters. The result is that a script such as:

oh_this=”bad”

can become (unencoded characters are marked in bold):

oh_th#@~^AQAAAA==raQAAAA==^#~@s=”b#@~^AQAAAA==CYQAAAA==^#~@d”

Fortunately, recursive encryption is not allowed, since the
script decoder makes only a single pass over the script and
decodes it to a different location in memory. If the script
decoder had decoded to the same memory location, then it
might have been possible to support recursive encoding
to arbitrary levels, which would have made the problem
much worse.

Given that an encoded script can appear anywhere in a
file, it might seem surprising that all of the authors of the
decoder tools made the same assumption: that the ‘#@~^’
signature is a guarantee that what follows is an encoded script.

Of course, that’s simply not true. Thus, the line:

 x=”#@~^” :#@~^AwAAAA==a{F5gAAAA==^#~@:msgbox(x)

was not decoded by any of those tools, yet Microsoft’s
VBScript and JScript scripting engines decoded and
executed it correctly (it prints ‘1’, not ‘#@~^’). Also note
the space that appears after the ‘ “ ’. Without it, even
Microsoft’s VBScript and JScript scripting engines are
fooled into believing that what follows the first ‘#@~^’
signature is an encoded script, since the ‘:’ character is a
valid entry in the base64 dictionary that is used to decode
the script length. The decoded length is an enormous value,
and too large for the Windows Scripting Host, which reports
that the script is invalid and exits without executing any
further script.

Despite the fact that unencoded script can appear both
before and after encoded script, the decoding is done before
any script is interpreted, so string concatenation does not
work. For example,
a=”#@~^AQAAAA==”+”qMQAAAA==^#~@”

does not decode to ‘a=1’. Additionally, decoding is not done
after any script is interpreted, so this line:
 eval(x)

where x is the encoded script
‘#@~^AQAAAA==CYQAAAA==^#~@’

that was read from a file, is not decoded and does not
evaluate to ‘a’.

(THAT’S A BUG)
As mentioned above, the length and checksum of the
decoded script are stored in base64 format. A bug exists in
the base64 decoder in Microsoft’s VBScript and JScript
scripting engines, which does not limit the input values
correctly. This can be used to obfuscate the true length
and/or checksum from tools which accept only files whose
length and checksum are correct.

There is also an integer overflow bug in Microsoft’s
VBScript and JScript scripting engines that causes a crash
while calculating the length of the script. The bug is
triggered if the top bit is set in a decoded length that would
otherwise point within the file.

CONCLUSION
So what happened to that script? In the end, it was simply
broken. There were extra characters inserted throughout the
script, so the decoded length did not match; and there were
some characters whose value was incorrect (‘.’ instead of the
tab character, for example), so the decoded checksum did
not match. After I had identified and removed the extra
characters, and corrected the incorrect characters, the script
decoded properly on an English system. It even contained
an exploit, but it was one that we knew about already.

