
VIRUS BULLETIN www.virusbtn.com

4 JUNE 2009

ANTI-UNPACKER TRICKS – PART
SEVEN
Peter Ferrie
Microsoft, USA

Unpackers have been around for as long as packers
themselves, but anti-unpacking tricks have appeared more
recently – and have increased rapidly both in number and,
in some cases, complexity.

The fi nal part of this series of articles (see also [1–6])
concentrates on anti-debugging tricks that target a number
of popular debuggers, as well as some anti-emulating and
anti-intercepting tricks.

All of the techniques described here were discovered and
developed by the author.

1. ANTI-DEBUGGING TRICKS

1.1 Immunity Debugger-specifi c tricks

Immunity Debugger is essentially OllyDbg with a Python
command-line interface. In fact, large parts of its code are
identical, byte for byte, to the OllyDbg code. Consequently,
it has the same vulnerabilities as OllyDbg with respect to
both detection and exploitation [5, 6].

1.1.1 Malformed fi les

Like OllyDbg, Immunity Debugger does not properly
support fi les whose entry point is zero. Zero is a legal
starting value for EXE fi les and allows execution of the MZ
header. Such fi les are still loaded in Immunity Debugger,
but in each case the entry point’s breakpoint is not set.

Immunity Debugger fails to check the values of the Export
Address Table Entries fi eld and the Base Relocation
Directory Size fi eld prior to performing some arithmetic on
them. This can result in an integer overfl ow and memory
corruption.

If the value of the Export Address Table Entries fi eld is
0x40000000 or larger, then Immunity Debugger will start
overwriting memory until a crash occurs.

If the value of the Base Relocation Directory Size fi eld is
0x3FFFFFFE or larger, then Immunity Debugger will parse
relocations from unallocated heap memory. On certain
platforms, this can result in the execution of arbitrary code.
The mitigating factor for the relocation table problem is the
fact that it requires a fi le size of greater than one gigabyte,
because Immunity Debugger reads the relocation data
directly from the fi le.

The Export Address Table Entries and Base Relocation
Directory Size bugs affect all versions of Immunity Debugger,
including 1.70. The authors of Immunity Debugger released
version 1.70 more than 60 days after the report was submitted
to them. The authors have not responded to the report.

Despite being based on OllyDbg, only four of the OllyDbg
anti-detection plug-ins have been ported to Immunity
Debugger: HideDebugger, HideOD, IsDebugPresent and
PhantOm. IsDebugPresent is a port of an earlier version,
which only sets the debuggee’s PEB->BeingDebugged to
zero. The others are identical to the OllyDbg versions, and
thus contain the same bugs [5, 6].

1.1.2 FindWindow

Immunity Debugger can be found by calling the user32
FindWindow() function, and then passing ‘ID’ as the class
name to fi nd.

Example code looks like this:

 push 0

 push offset l1

 call FindWindowA

 test eax, eax

 jne being_debugged

 ...

l1: db “ID”, 0

1.2 Zeta Debugger-specifi c tricks

Zeta Debugger is a lesser-known user-mode debugger with
a graphical user interface. It supports plug-ins, but so far
there are none that hide the presence of the debugger. Its
code is very good and does not seem to have any obvious
vulnerabilities. However, there is a bug that causes it to
crash immediately on Windows 2000. The bug relates
to the use of the kernel32 CreateToolhelp32Snapshot()
function on a suspended process. This function was
introduced to the Windows NT-line in Windows 2000,
though it existed as far back as Windows 95 in a separate
DLL. On Windows 2000 and later, it calls into the ntdll
RtlQueryProcessDebugInformation() function, which
performs the majority of the work. Part of that work
includes inserting into the process a thread which gathers
information about the process. This has the unintended
consequence of resuming the process. Since the debugger
has attached to the process, Windows also creates another
thread that executes a breakpoint on behalf of the debugger.
The problem is that when the process wakes up, the debug
breakpoint will be executed before the debugger can call
WaitForDebugEvent() to intercept it. Typically, the process
would crash at this point. However, there are ways to
continue execution and the process will not be under the
debugger’s control.

TECHNICAL FEATURE

VIRUS BULLETIN www.virusbtn.com

5JUNE 2009

Windows XP and later attempt to read from the process
memory fi rst. This attempt fails for a suspended process
because it has not been completely initialized at that time.
As a result, Windows XP and later do not create a new
thread, so they do not demonstrate the problem.

1.2.1 FindWindow

Zeta Debugger can be found by calling the user32
FindWindow() function, and then passing ‘Zeta Debugger’
as the class name to fi nd.

Example code looks like this:
 push 0

 push offset l1

 call FindWindowA

 test eax, eax

 jne being_debugged

 ...

l1: db “Zeta Debugger”, 0

1.3 Rock Debugger-specifi c tricks
Rock Debugger is another less well known user-mode
debugger with a graphical user interface. It supports
plug-ins, but there are none that hide the presence of
the debugger. It does not seem to have any obvious
vulnerabilities.

1.3.1 FindWindow

Rock Debugger can be found by calling the user32
FindWindow() function, and then passing ‘Rock Debugger’
as the window name to fi nd.

Example code looks like this:
 push offset l1

 push 0

 call FindWindowA

 test eax, eax

 jne being_debugged

 ...

l1: db “Rock Debugger”, 0

1.4 Turbo Debug32-specifi c tricks
Turbo Debug32 used to be a popular debugger for
user-mode applications because of its familiar interface and
solid performance. However, there are several problems
in its code which leave it vulnerable to denial-of-service
attacks, unexpected execution points, and even the
execution of arbitrary code.

By far the biggest problem in Turbo Debug32 is the fact that
it makes multiple calls to strcpy() using stack buffers and
user-defi ned copy sizes. These sizes are not checked before
the copy is performed, thus it is possible for an attacker to
crash the debugger, or potentially to execute arbitrary code.

Turbo Debug32 attempts to read the entire import table
from the process in order to fi nd and hook the kernel32
ExitProcess() function. It trusts the Import Table Directory
Size fi eld value, and uses it to allocate memory for the
import table, regardless of the value that is specifi ed.
Windows uses the Import Table Directory Size fi eld value
as an upper bound value when parsing the import table, not
as an allocation size for it. In the case of Turbo Debug32,
if the size is large enough, the system performance will be
impacted severely. Furthermore, since it is possible for the
Import Table Directory Size fi eld value to be smaller than
the true size of the import table, Turbo Debug32 might not
read enough bytes to parse the import table correctly. As a
result, the debugger might attempt to access out-of-bounds
memory and crash.

When Turbo Debug32 is asked to attach to a process
that is already running, it assumes that advapi32.dll is
already present in memory and available to the kernel32
GetModuleHandle() function. The correct behaviour would
be to call the kernel32 LoadLibraryA() function. Turbo
Debug32 calls the kernel32 GetProcAddress() function to
retrieve the addresses of two functions from advapi32.dll,
and then calls them without checking if those addresses are
non-zero.

When Turbo Debug32 is asked to step over an instruction,
it calculates the length of that instruction, then places a
breakpoint at the location of the next instruction. However,
the debugger calculates the instruction length for the
0xFF15 opcodes (‘CALL’ instruction, absolute indirect
mode) incorrectly. The calculation code is copied directly
from the 16-bit product, which checks for x6 for absolute
addressing (where x6 represents an instruction encoding
where ‘x’ is any hexadecimal value). However, this is
only valid for 16-bit code; in 32-bit code, x5 is absolute
addressing.

Turbo Debug32 also has no understanding of SIB mode.
As a result, it writes a 0xCC opcode (‘INT 3’ instruction) at
the wrong location. This causes a crash in most cases, but it
can allow uncontrolled code execution if the new pointer is
somewhat valid, and it could be manipulated by an attacker
to produce this effect intentionally. It could also be used as
a method to detect Turbo Debug32.

Example code looks like this:
l1: call d [offset l3]

l2: ...

l3: dd offset l2

 db 0cch \

 - (offset $-offset l1) dup (?)

l4: dd offset being_debugged

By stepping over l1, a breakpoint will be placed inside the
l1 instruction, instead of at the location of l2. The effect is

VIRUS BULLETIN www.virusbtn.com

6 JUNE 2009

to change the ‘call d [offset l3]’ instruction into a ‘call d
[offset l4]’ instruction.

1.5 Interactive DisAssembler (IDA)-specifi c
tricks

Interactive DisAssembler, or IDA, is the most popular
disassembler tool available today. It supports plug-ins.

IDA trusts the value of the Base Relocation Directory Size
fi eld, and uses it to allocate memory for the relocation table.
However, the relocation table itself may specify a smaller
size, because Windows uses the Base Relocation Directory
Size fi eld value as an upper bound value when parsing the
relocation table, not as an allocation size for it. If the Base
Relocation Directory Size fi eld value is large enough, the
system performance will be impacted severely, and IDA
might exit unexpectedly.

Recent versions of IDA have been extended to include a
user-mode debugger. The debugger is implemented as a
plug-in for IDA. It has a couple of limitations.

The fi rst limitation is during the debugging of fi les with
a PE->ImageBase fi eld value of zero. For such fi les, the
IDA debugger will display a message that bears little
resemblance to the actual problem. Once the fi le has loaded,
all breakpoints are ignored and attempts to single-step
will cause the debugger to resume execution without
interruption. This technique has since been disclosed
publicly [7].

The second limitation is during the debugging of fi les
which contain multiple relocations pointing to the same
memory location. IDA will not apply all of the relocation
items, leading to an incorrect disassembly. There is no
way of producing such a fi le automatically – manual
intervention is required, for example by using a tool. The
multiple relocation method can also be combined with the
ImageBase zero trick. This combination of techniques is
used by the Relock virus.

1.6 IDA plug-ins

A number of packers have been written to detect the
IDA debugger, so the IDA Stealth plug-in was written to
attempt to hide the debugger from them. The following is a
description of the plug-in, with a list of vulnerabilities that
could be used to detect it.

1.6.1 IDA Stealth

IDA Stealth sets the PEB->BeingDebugged and
PEB->Heap->ForceFlags fl ags to zero, and clears all but the
HEAP_GROWABLE fl ag in the PEB->Heap->Flags fl ags.
It clears the FLG_HEAP_ENABLE_TAIL_CHECK,

FLG_HEAP_ENABLE_FREE_CHECK and FLG_HEAP_
VALIDATE_PARAMETERS bits in the PEB->NtGlobalFlag
fi eld. This behaviour is not as bad as setting bits arbitrarily,
but it is still incorrect because the value in the
PEB->NtGlobalFlag fi eld can be set by a registry key and/or
the debuggee [8].

IDA Stealth hooks the debuggee’s ntdll
NtQuerySystemInformation() function by replacing the
fi rst fi ve bytes with a relative jump to an injected DLL.
The hook intercepts attempts to call the ntdll
NtQuerySystemInformation() function with the
SystemKernelDebuggerInformation class. When that
occurs, the hook checks if the SystemInformation
parameter points to a valid memory address. However, it
does not check whether the SystemInformationLength
parameter contains a value that is large enough to hold the
complete return value. As a result, if the length is too small,
then IDA Stealth will cause an exception. The IDA
debugger will trap the exception, but the debugging session
will be interrupted.

If the parameters contain valid values, then IDA Stealth will
store a value that corresponds to the KdDebuggerEnabled
fl ag that has been cleared and the KdDebuggerNotPresent
fl ag that has been set. However, due to an oversight by the
author of the plug-in, the hook then calls the original ntdll
NtQuerySystemInformation() function, and returns the true
value. This fact was probably not noticed by the author of
the plug-in because IDA is not a kernel-mode debugger, so
unless a real kernel debugger was active at the time, the true
value would match the fake one.

The hook also checks if the ntdll
NtQuerySystemInformation() function has been called
with the SystemProcessInformation class. If it has, then the
hook calls the original ntdll NtQuerySystemInformation()
function. If the call is successful, and the ‘hide IDA’
option is enabled, then the hook searches within the
returned buffer for ‘idag.exe’ (the graphical version of
IDA), and then erases all copies of the name that are found.
The hook does not search for ‘idaw.exe’ (the console
version of IDA), though.

If the ‘fake parent’ option is enabled, then the hook
replaces the process ID of the IDA debugger with the
process ID of EXPLORER.EXE in the
InheritedFromUniqueProcessId fi eld. This could be
considered a bug, since the true parent might not be
Explorer. The proper behaviour would be to use the
process ID of IDA’s parent. Due to what appears to
be another oversight by the author of IDA Stealth, this
option is mutually exclusive with the ‘hide IDA’ option.

IDA Stealth hooks the debuggee’s ntdll
NtQueryInformationProcess() function by replacing

VIRUS BULLETIN www.virusbtn.com

7JUNE 2009

the fi rst fi ve bytes with a relative jump to an injected
DLL. The hook intercepts attempts to call the ntdll
NtQueryInformationProcess() function with the
ProcessDebugPort class. When that occurs, the hook
tries to return a zero for the debug port. However,
there is a bug in this code, which is that the hook uses
a hard-coded buffer length when it calls the original
ntdll NtQueryInformationProcess() function. This can
allow the function to succeed, even in cases where the
ProcessInformationLength is invalid. As a result, passing
an invalid length (longer than allowed) will result in a
fi xed return length (if the ReturnLength has been specifi ed)
and a zeroed port instead of an error code, and IDA Stealth
is revealed.

The hook also checks if the ntdll
NtQueryInformationProcess() function has been called
with the ProcessBasicInformation class. If it has, then the
hook assumes that the caller is requesting information about
itself. The hook replaces the parent process ID with that
of the shell window in the InheritedFromUniqueProcessId
fi eld, without fi rst checking if the requested process ID
is that of the current process. This behaviour is incorrect
because the debuggee might be inquiring about a different
process. This could also be considered a bug, since the true
parent might not be the shell. The correct behaviour would
be to use the process ID of IDA’s parent.

IDA Stealth hooks the debuggee’s ntdll NtQueryObject()
function by replacing its fi rst fi ve bytes with a relative
jump to an injected DLL. The hook intercepts attempts
to call the ntdll NtQueryObject() function with the
ObjectAllTypesInformation class. When this occurs, the
hook calls the original ntdll NtQueryObject() function,
then searches within the returned buffer for the
‘DebugObject’ string. The hook sets the object counts to
zero if the DebugObject string is found. There is a minor
bug in the method of comparison, which is that it assumes
that the name is zero-terminated. While this is currently
the case for DebugObject, it is not a requirement, and there
are already other objects with names that are not zero-
terminated. The correct method would be to use the length
fi eld as the number of characters to compare. Of course, the
length should be verifi ed fi rst, to avoid false success on
substrings or superstrings, depending on which length is
chosen for the comparison. A correct implementation is
described in [8].

IDA Stealth hooks the debuggee’s ntdll NtClose() function
by replacing the fi rst fi ve bytes of the function with a
relative jump to an injected DLL. When the hook is
reached, it registers a Structured Exception Handler before
calling the original ntdll NtClose() function. The idea is
to consume any exception that occurs. However, a debug

event occurs in the debugger before the exception occurs
in the debuggee, and that event cannot be prevented by
the debuggee. The result is that IDA will always break by
default. Furthermore, this method does not take into account
that, in Windows XP and later, any Vectored Exception
Handlers that the debuggee registers will run before the
registered Structured Exception Handler in IDA Stealth.
Thus, the presence of the debugger can still be detected on
those platforms.

The plug-in hooks the debuggee’s kernel32
OutputDebugStringA() and kernel32
OutputDebugStringW() functions by replacing the fi rst
fi ve bytes of each with a relative jump to an injected DLL.
When the hook is reached, it calls the original kernel32
OutputDebugString() function, and then sets the error code.

IDA Stealth tries to hook the debuggee’s ntdll
NtSetInformationThread() function by replacing its
fi rst fi ve bytes with a relative jump to an injected
DLL. The hook would intercept attempts to call the
ntdll NtSetInformationThread() function with the
HideThreadFromDebugger class, and if that were to occur,
the hook would ignore the request and return successfully.
However, there are two bugs in the code. The fi rst is that
the author of IDA Stealth mistyped the name of the
function, so it is never hooked. The second is that if an
invalid handle is passed to the function, an error code
should be returned – a successful return would be an
indication that the plug-in is running.

IDA Stealth hooks the debuggee’s kernel32 SuspendThread()
function by replacing the fi rst fi ve bytes with a relative jump
to an injected DLL. When the hook is reached, it simply
returns failure. This behaviour is a bug because no error
code is returned if an invalid handle is specifi ed.

IDA Stealth hooks the debuggee’s kernel32 GetTickCount()
function by replacing the fi rst fi ve bytes with a relative jump
to an injected DLL. When the hook is reached, it returns a
tick count that is incremented by a constant value each time
it is called, regardless of how much time has passed. The
value of the constant depends on the option that is enabled,
and is either 1 or 966.

The plug-in hooks the debuggee’s user32 BlockInput()
function by replacing the fi rst fi ve bytes with a relative jump
to an injected DLL. When the hook is reached, it simply
returns successfully.

IDA Stealth hooks the debuggee’s kernel32 OpenProcess()
function by replacing its fi rst fi ve bytes with a relative
jump to an injected DLL. When the hook is reached, it
enumerates the list of processes in order to fi nd the
CSRSS.EXE process. If this is found, then its process ID is
compared to the requested process ID. If there is a match,

VIRUS BULLETIN www.virusbtn.com

8 JUNE 2009

then the hook returns an error code. Otherwise, it calls the
original function.

IDA Stealth hooks the debuggee’s user32 SwitchDesktop()
function by replacing the fi rst fi ve bytes of the function
with a relative jump to an injected DLL. When the hook
is reached, it simply returns success. This behaviour is a
bug because no error code is returned if an invalid handle
is specifi ed.

The plug-in hooks the debugger’s ntdll
DbgUiConvertStateChangeStructure() function, if it is
available, by replacing the fi rst fi ve bytes with a relative
jump to the plug-in. When the hook is reached, it checks for
the DBG_PRINTEXCEPTION_C (0x40010006) exception,
and then simply returns success if it is seen. Otherwise, it
calls the original function. This allows the exception to be
delivered to the debuggee.

IDA Stealth hooks the debuggee’s ntdll
KiUserExceptionDispatcher() function by replacing the
fi rst fi ve bytes with a relative jump to an injected DLL.
When the hook is reached, it saves the values of the debug
registers to a private memory block, and then clears them
in the context structure, before passing the exception to
the debuggee’s exception handler. Upon return from the
debuggee’s exception handler, the hook restores the values
of the debug registers, and then resumes execution.

IDA Stealth hooks the debuggee’s kernel32
SetThreadContext() function by replacing the fi rst fi ve
bytes of the function with a relative jump to an injected
DLL. When the hook is reached, it saves the contents of
the debug registers to a private memory location. It clears
the bit in the context structure that specifi es that the debug
registers are present, and then calls the original kernel32
SetThreadContext() function. The effect is to cache the
requested changes to the debug registers, but to prevent
those changes from occurring.

The plug-in hooks the debuggee’s kernel32
GetThreadContext() function by replacing the fi rst fi ve
bytes of the function with a relative jump to an injected
DLL. When the hook is reached, it calls the original
kernel32 GetThreadContext() function, then merges the
cached contents of the debug registers with the true values
of the rest of the context. The effect is to simulate the
requested changes to the debug registers.

The plug-in hooks the debuggee’s ntdll NtYieldExecution()
function by replacing the fi rst fi ve bytes of the function
with a relative jump to an injected DLL. When the hook
is reached, it calls the original ntdll NtYieldExecution()
function, then returns successfully.

IDA Stealth hooks the debuggee’s user32 FindWindowA(),
user32 FindWindowW(), user32 FindWindowExA() and

user32 FindWindowExW() functions by replacing the fi rst
fi ve bytes of each with a relative jump to an injected DLL.
When the hook is reached, it checks if a class name has
been specifi ed. If it has not, then the window name will be
used. In either case, the hook converts the name to lower
case, and to Unicode if a hook was reached for an ANSI
function. The hook then searches for the name within a
list carried by the DLL. If a match is found, then the hook
returns a failure. Otherwise it calls the original function.

The list of class names is as follows:

idawindow

tnavbox

idaview

tgrzoom

The list of window names is as follows:

ida

graph overview

idc scripts

disassembly

program segmentation

call stack

general registers

breakpoint

structure offsets

database notepad

threads

segment translation

imports

desktopform

function calls

structures

strings window

functions window

no signature

The problem is that the entire requested string is searched for
each of the names in the list, which means that windows will
be hidden if they contain words that include any of the strings
in the lists. This mostly affects the ‘ida’ string. For example, a
window with the title ‘Acrobat Reader - [hidan.pdf]’ [9] will
not be visible.

IDA Stealth hooks the debuggee’s user32 EnumWindows()
function by replacing the fi rst fi ve bytes of the function
with a relative jump to an injected DLL. When the hook

VIRUS BULLETIN www.virusbtn.com

9JUNE 2009

is reached, it replaces the callback function pointer on
the stack with a new callback function pointer inside
the DLL, and then calls the original function. When the
new callback function is reached, it retrieves the window
name and searches within the list of window names
above. If a match is found, then the callback continues
the enumeration. If no match is found it calls the original
function.

IDA Stealth hooks the debuggee’s ntdll
NtTerminateThread() function by replacing the fi rst fi ve
bytes of the function with a relative jump to an injected
DLL. When the hook is reached, it simply returns
failure. This behaviour is a bug because no error code
is returned if an invalid handle is specifi ed. The same
happens when the plug-in hooks the debuggee’s ntdll
NtTerminateProcess() function.

IDA Stealth hooks the debuggee’s kernel32 GetVersion()
function by replacing the fi rst fi ve bytes of the function
with a relative jump to an injected DLL. When the hook is
reached, it returns a constant value that decodes to version
5.1.2600. This corresponds to Windows XP.

The plug-in hooks the debuggee’s ntdll RtlGetVersion()
function by replacing the fi rst fi ve bytes of the function
with a relative jump to an injected DLL. When the hook
is reached, it checks if the RTL_OSVERSIONINFOW
or RTL_OSVERSIONINFOEXW format has been
requested. If the RTL_OSVERSIONINFOW format is
requested, the hook returns version 5.1.1 with a platform
ID that corresponds to Windows 9x/Me and a description
of ‘Service Pack 3’. This information contains two bugs.
The fi rst is that the build number is not ‘2600’. In fact,
the correct build number is assigned, but to the wrong
structure member. The second bug is that the platform ID
does not correspond to a Windows NT-based platform.

If the RTL_OSVERSIONINFOEXW format is requested,
the hook returns version 5.1.2600, with a platform ID
that corresponds to a Windows NT-based platform, and a
description of ‘Service Pack 3’.

There is a bug in the code if neither format is requested,
which is that no error code is returned.

The author of IDA Stealth responded to the report very
quickly. The bugs were mostly fi xed in beta 2. A number of
new bugs were introduced in beta 2, but they were fi xed in
beta 3.

2. ANTI-UNPACKING BY ANTI-EMULATING
An emulator, as referred to within this paper, is a purely
software-based environment, most commonly used by
anti-malware software. It places the fi le to execute inside

the environment and watches the execution for particular
events of interest.

2.1 Software interrupts

2.1.1 Interrupt 4

When an EXCEPTION_INTEGER_OVERFLOW
(0xC0000095) exception occurs, the EIP register has
already been advanced to the next instruction, so Windows
tries to rewind the EIP to point to the proper place. The
problem is that Windows assumes that the exception is
caused by a single-byte ‘CE’ opcode (‘INTO’ instruction).
If the ‘CD 04’ opcode (‘INT 4’ instruction) is used to cause
the exception, then the EIP will point to the wrong location.
The same behaviour can be seen if any prefi xes are placed
before the ‘INTO’ instruction. An emulator that does not
behave in the same way will be revealed instantly.

2.1.2 Interrupt 0x0D

When a general protection fault (interrupt 0x0D) occurs,
Windows attempts to determine the cause of the fault in
order to supply the appropriate exception code to the
handler. The problem is that there are several ways to
produce the general protection fault, which can result in
very different exception codes.

For example, attempting to execute an instruction that
contains too many prefi xes yields EXCEPTION_
ILLEGAL_INSTRUCTION (0xC000001D). The use of
the HLT instruction, any of the descriptor table
instructions and certain ports, yields EXCEPTION_
PRIVILEGED_INSTRUCTION (0xC0000096). Other
instructions and ports yield EXCEPTION_ACCESS_
VIOLATION (0xC0000005). As described elsewhere [10],
an instruction that contains the value 0xF0 within the fi rst
four bytes yields EXCEPTION_INVALID_LOCK_
SEQUENCE (0xC000001E).

2.1.3 Interrupt 0x2C

In Windows NT, interrupt 0x2C formed one half of an
event pair with interrupt 0x2B. A client and a server
each controlled one half of the pair, with the server
using interrupt 0x2B to pass information to the client,
and the client using interrupt 0x2C to pass information to
the server.

That functionality was removed in Windows 2000. Instead,
in Windows 2000 and Windows XP, interrupt 0x2B is the
user-mode callback interface for user32.dll, and interrupt
0x2C returns the EXCEPTION_NO_EVENT_PAIR
(0xC000014E) in the EAX register. That functionality was
changed again in Windows Server 2003. Now, in Windows
Server 2003 and Windows Vista, interrupt 0x2C is the

VIRUS BULLETIN www.virusbtn.com

10 JUNE 2009

DbgRaiseAssertionFailure() macro, and when it is
executed Windows issues an EXCEPTION_ASSERTION_
FAILURE (0xC0000420) via an exception that can be
intercepted.

2.2 File-format tricks

Normally, a PE fi le requires a non-zero section count and
corresponding section descriptors to lay out the fi le in
memory. However, as noted in [8], it is possible to have
no section table in the fi le. As a result, it is also possible to
specify explicitly that the fi le contains no sections. That is,
to set the PE->NumberOfSections fi eld to zero. Following
such a change, it becomes possible to completely remove
the section table on all Windows NT-based platforms,
including Windows Vista. As a result of removing the
section table, many tools decide that the fi le is corrupted
and not worthy of examination.

3. ANTI-UNPACKING BY
ANTI-INTERCEPTING

3.1 W^X interception

Finally, some unpacking tools work by changing the
previously writable-executable page attributes to either
writable or executable, but not both. These changes can
be detected by using timing attacks, such as a timer query
around a local memory write.

Example code looks like this:

rdtsc

mov ebx, edx

xchg ecx, eax

;hidden page fault because page is not writable

mov b [offset $], 8bh

rdtsc

sub eax, ecx

sbb edx, ebx

jne being_debugged

cmp eax, 500h

jnbe being_debugged

In the example code, the assumption is that the code section
is both executable and writable. This is tested by querying
a timer (RDTSC), saving the result, attempting to write to
the code section, then querying the timer again. In a normal
environment, the difference between the two timer values
would be small. However, in a W^X environment, the write
will cause a page fault because the page attributes have been
changed to read-only. The servicing of the page fault will
take a long time, and so the difference between the timer
values will be large.

CONCLUDING REMARKS

As noted throughout this series, new anti-unpacking
techniques continue to be developed as the older ones are
constantly being defeated. This series of articles has focused
on some of the tricks that might become common in the
future, along with some countermeasures.

The text of this article was produced without reference to
any Microsoft source code or personnel.

REFERENCES

[1] Ferrie, P. Anti-unpacker tricks – part one.
Virus Bulletin, December 2008, p.4.
http://www.virusbtn.com/pdf/magazine/2008/
200812.pdf.

[2] Ferrie, P. Anti-unpacker tricks – part two.
Virus Bulletin, January 2009, p.4.
http://www.virusbtn.com/pdf/magazine/2009/
200901.pdf.

[3] Ferrie, P. Anti-unpacker tricks – part three.
Virus Bulletin, February 2009, p.4.
http://www.virusbtn.com/pdf/magazine/2009/
200902.pdf.

[4] Ferrie, P. Anti-unpacker tricks – part four.
Virus Bulletin, March 2009, p.4.
http://www.virusbtn.com/pdf/magazine/2009/
200903.pdf.

[5] Ferrie, P. Anti-unpacker tricks – part fi ve.
Virus Bulletin, April 2009, p.4.
http://www.virusbtn.com/pdf/magazine/2009/
200904.pdf.

[6] Ferrie, P. Anti-unpacker tricks – part six.
Virus Bulletin, May 2009, p.4.
http://www.virusbtn.com/pdf/magazine/2009/
200905.pdf.

[7] Souriz’s weblog. #773: bug in IDA-Pro [fails to
debug zero-based PE].
http://souriz.wordpress.com/2008/05/14/773-bug-
in-ida-pro-fails-to-debug-zero-base-pe/.

[8] Ferrie, P. Anti-unpacker tricks.
http://pferrie.tripod.com/papers/unpackers.pdf.

[9] Ferrie, P. Hidan and dangerous. Virus Bulletin,
March 2007, p.4. http://www.virusbtn.com/pdf/
magazine/2007/200703.pdf.

[10] Ferrie, P. Locked and loaded.
http://pferrie.tripod.com/misc/lowlevel1.htm.

http://www.virusbtn.com/pdf/magazine/2008/200812.pdf
http://www.virusbtn.com/pdf/magazine/2009/200901.pdf
http://www.virusbtn.com/pdf/magazine/2009/200902.pdf
http://www.virusbtn.com/pdf/magazine/2009/200903.pdf
http://www.virusbtn.com/pdf/magazine/2009/200904.pdf
http://www.virusbtn.com/pdf/magazine/2009/200905.pdf
http://www.virusbtn.com/pdf/magazine/2007/200703.pdf
http://souriz.wordpress.com/2008/05/14/773-bug-in-ida-pro-fails-to-debug-zero-base-pe/
http://pferrie.tripod.com/papers/unpackers.pdf
http://pferrie.tripod.com/misc/lowlevel1.htm

